CONTENTS

Abstract		1
Introduction		1
Purpos	e and Scope	2
	Area	
-	Description	
Description of	of Simulated Water-Management Alternatives	4
	ater-Management Alternatives on Streamflow	
	er of 1993 Hydrographs	
	Ouration	
	low Frequency	
	1-Day Low Flow	
	7-Day Low Flow	
	30-Day Low Flow	
	d Conclusions	
•		
FIGURES		
	ps of the Ipswich River Basin, Massachusetts, showing:	_
	Municipalities, drainage network, and stream-gaging stations	3
2	. Water-supply withdrawal sites and hypothetical wastewater-return	_
2.4. G	flow sites in the headwaters	5
	aphs showing:	
3	Daily streamflow-depletion rates calculated for alternative withdrawal rates at	_
	selected model reaches in the Ipswich River Basin	7
4	Example of the streamflow depletion at model reach 8 limited by a special	
	action developed for the Hydrological Simulation Program—Fortran (HSPF)	
	when model reach 19 is below 22 cubic feet per second	9
	x plot of total precipitation during July and August 1961 through 1995 relative	
	otal precipitation during July and August 1993	12
	aphs showing:	
6	Daily flow at model reach 8 simulated under management alternatives for	
	(A) water supply, (B) wastewater, and (C) combined water supply and	
_	wastewater, June through October 1993	13
7	. Cumulative-streamflow volume as a percentage of cumulative-streamflow	
	volume under no withdrawals in relation to cumulative withdrawals as a	
	percentage of the actual withdrawals in model reach 8, July 1 through	
	August 31, 1993	14
8	Daily flow at model reach 19 simulated under management alternatives for	
	(A) water supply, (B) wastewater, and (C) combined water supply and	
_	wastewater, June through October 1993	15
9	Flow-duration curves of simulated daily-mean streamflow at model reach 8	
	and 19 under management alternatives for (A) water supply, (B) wastewater,	
	and (C) combined water supply and wastewater, 1961–95	17
	aphs showing Log-Pearson type III low-flow frequency curves for:	
10	. 1-day annual minimum daily-mean streamflow simulated under management alternatives	
	for (A) water supply, (B) wastewater, and (C) combined water supply and wastewater,	
	model reach 8, 1961–95	20

	11.	alternatives for (A) water supply, (B) wastewater, and (C) combined water supply and wastewater, model reach 19, 1961–95	21
	12.	7-day annual minimum daily-mean streamflow simulated under management alternatives for	
		(A) water supply, (B) wastewater, and (C) combined water supply and wastewater,	
		model reach 8, 1961–95	23
	13.	7-day annual minimum daily-mean streamflow simulated under management alternatives	
		for (A) water supply, (B) wastewater, and (C) combined water supply and wastewater, model reach 19, 1961–95	25
	14.	30-day annual minimum daily-mean streamflow simulated under management alternatives	23
	• • •	for (A) water supply, (B) wastewater, and (C) combined water supply and wastewater,	
		model reach 8, 1961–95	26
	15.	30-day annual minimum daily-mean streamflow simulated under management alternatives	
		for (A) water supply, (B) wastewater, and (C) combined water supply and wastewater,	
		model reach 19, 1961–95	28
ΓABLE	c		
1.		r-management alternatives simulated with the Hydrologic Simulation	
2		ram—Fortran (HSPF) of the Ipswich River Basin, Massachusetts	6
2.		age 1989–93 withdrawal rates and a 50-percent reduction in withdrawal rates	
		the Ipswich River Basin from May and October for the towns of	10
2		nington and Reading	10
3.		othetical wastewater-return flow rates and associated model reach of the return in the Town of Wilmington.	11
4.		ian 1-, 7-, and 30-day annual low-flow at model reaches 8 and 19, simulated	11
-7.		r water-management alternatives. Inswich River. 1961–95	18

CONVERSION FACTORS

CONVERSION FACTORS

Multiply	Ву	To obtain
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
gallon per day (gal/d)	0.003785	cubic meter per day
million gallons (Mgal)	3,785	cubic meter
million gallons per day (Mgal/d)	0.04381	cubic meter per second
square mile (mi ²)	259.0	hectare
square mile (mi ²)	2.590	square kilometer